Chúng tôi đang làm việc để khôi phục ứng dụng Unionpedia trên Google Play Store
Lối raIncoming
🌟Chúng tôi đã đơn giản hóa thiết kế của mình để điều hướng tốt hơn!
Instagram Facebook X LinkedIn

Số nguyên

Mục lục Số nguyên

Trong toán học, số nguyên bao gồm các số nguyên dương (1, 2, 3,…), các số nguyên âm (−1, −2, −3,...) và số 0.

Mục lục

  1. 139 quan hệ: -0, -2 (số), Archimedes, Đa thức Legendre, Đóng (toán học), Đại số, Đại số giao hoán, Đại số sơ cấp, Đẳng thức lượng giác, Đặc tả tập tin, Định đề Bertrand, Định lý lớn Fermat, Định lý nhỏ Fermat, Định lý Viète, Điện tích, Đo giao thoa, Đơn vị cộng, −1, Baryon, Bài toán tối ưu hóa, Bù 2, Bất đẳng thức Bernoulli, Bồi âm, Bổ đề Bézout, Bộ ba số Pythagore, Biểu diễn dữ liệu, Boson, Byte, C++, Carl Friedrich Gauß, Cận trên đúng, Cửu chương toán thuật, Căn nguyên thủy modulo n, Chứng minh toán học, Chữ số, Chia hết, Chu kỳ, Danh sách các bài toán học, Diofantos, Emmy Noether, Expr, Giả định abc, Giếng khoan, Googol, Hàm bước Heaviside, Hàm lượng giác, Hàm rect, Hàm tuần hoàn, Hỗn số, Hệ đếm, ... Mở rộng chỉ mục (89 hơn) »

-0

−0 là biểu diễn của số âm không (0) (tiếng Anh: negative zero) - một con số tồn tại trong máy tính, phát sinh do một số phương pháp biểu diễn số nguyên âm và hầu hết các phương pháp biểu diễn số chấm động (floating point).

Xem Số nguyên và -0

-2 (số)

Trong toán học, −2 là số đối của 2.

Xem Số nguyên và -2 (số)

Archimedes

Archimedes thành Syracuse (tiếng Hy Lạp) phiên âm tiếng Việt: Ác-si-mét; (khoảng 287 trước Công Nguyên – khoảng 212 trước Công Nguyên) là một nhà toán học, nhà vật lý, kỹ sư, nhà phát minh, và một nhà thiên văn học người Hy Lạp.

Xem Số nguyên và Archimedes

Đa thức Legendre

Trong toán học, các hàm Legendre là các hàm số thỏa mãn phương trình vi phân Legendre: Phương trình vi phân này được đặt tên theo nhà toán học Pháp Adrien-Marie Legendre, và thường hay gặp trong vật lý học hay các ngành kỹ thuật.

Xem Số nguyên và Đa thức Legendre

Đóng (toán học)

Một tập hợp được gọi là đóng với một phép toán nếu việc thực hiện phép toán này trên các phần tử của tập hợp này luôn luôn có kết quả là một phần tử của chính tập hợp nói trên.

Xem Số nguyên và Đóng (toán học)

Đại số

Công thức giải phương trình bậc 2 thể hiện các nghiệm của phương trình bậc hai ax^2 + bx +c.

Xem Số nguyên và Đại số

Đại số giao hoán

Một bưu thiếp năm 1915 từ một trong những người tiên phong của đại số giao hoán, Emmy Noether, gửi đến E. Fischer, thảo luận công việc của bà trong đại số giao hoán. Đại số giao hoán là một phân nhánh của đại số Nghiên cứu các vành hoán vị, iđêan của chúng và các mô-đun trên các vành như vậy.

Xem Số nguyên và Đại số giao hoán

Đại số sơ cấp

Đồ thị phẳng (đường cong parabol màu đỏ) của phương trình đại số y.

Xem Số nguyên và Đại số sơ cấp

Đẳng thức lượng giác

Trong toán học, các đẳng thức lượng giác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn các giá trị của biến số.

Xem Số nguyên và Đẳng thức lượng giác

Đặc tả tập tin

Đặc tả tập tin của input, output, và error Trong lập trình máy tính, một đặc tả tập tin (tiếng Anh: file descriptor, viết tắt FD) là một chỉ số trừu tượng để truy cập một tập tin.

Xem Số nguyên và Đặc tả tập tin

Định đề Bertrand

Định đề Bertrand là một định lý phát biểu rằng với bất kỳ số nguyên n > 3, luôn tồn tại ít nhất một số nguyên tố p sao cho Một công thức khác đẹp hơn tuy không chặt bằng: với mỗi số tự nhiên n > 1 luôn tồn tại ít nhất một số nguyên tố p sao cho Một công thức khác, với p_n là số nguyên tố thứ n, thì với n \ge 1 Joseph Bertrand (1822–1900) lần đầu đưa ra phỏng đoán trên năm 1845.

Xem Số nguyên và Định đề Bertrand

Định lý lớn Fermat

Pierre de Fermat Phương trình Định lý cuối của Fermat (hay còn gọi là Định lý lớn Fermat) là một trong những định lý nổi tiếng trong lịch sử toán học.

Xem Số nguyên và Định lý lớn Fermat

Định lý nhỏ Fermat

Định lý nhỏ của Fermat (hay định lý Fermat nhỏ - phân biệt với định lý Fermat lớn.) khẳng định rằng nếu p là một số nguyên tố, thì với số nguyên a bất kỳ, a^p-a sẽ chia hết cho p. Bằng kí hiệu đồng dư ta có: Ví dụ: với a.

Xem Số nguyên và Định lý nhỏ Fermat

Định lý Viète

Trong toán học, định lý Viète hay công thức Viète (có khi viết theo phiên âm tiếng Việt là Vi-ét), do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các nghiệm của một phương trình đa thức (trong trường số phức) và các hệ số của nó.

Xem Số nguyên và Định lý Viète

Điện tích

Trường điện của điện tích điểm dương và âm. Điện tích là một tính chất cơ bản và không đổi của một số hạt hạ nguyên tử (hạt sơ cấp), đặc trưng cho tương tác điện từ giữa chúng.

Xem Số nguyên và Điện tích

Đo giao thoa

Hình 1. Đường đi của các chùm tia sáng qua giao thoa kế Michelson. Hai chùm tia sáng xuất phát từ cùng một nguồn sáng, đi theo hai đường khác nhau, rồi gặp nhau tại bề mặt một gương bán mạ trước khi đi vào máy thu.

Xem Số nguyên và Đo giao thoa

Đơn vị cộng

Trong toán học, đơn vị cộng của một tập hợp có phép toán cộng là một phần tử mà phần tử x cộng với nó luôn bằng x. Một trong những đơn vị cộng quen thuộc nhất là số 0 trong Toán học cơ bản, ngoài ra còn có các đơn vị cộng khác trong các cấu trúc toán học khác mà phép cộng được định nghĩa, như trong nhóm và vành.

Xem Số nguyên và Đơn vị cộng

−1

Trong toán học, −1 là số đối của 1.

Xem Số nguyên và −1

Baryon

Baryon hay còn gọi là baryon fermion là các hạt hadron có spin bán nguyên (do đó là fermion) chứa 3 quark hóa trị và 3 phản quark hóa trị.

Xem Số nguyên và Baryon

Bài toán tối ưu hóa

Trong khoa học máy tính và toán học, bài toán tối ưu hóa là bài toán tìm kiếm lời giải tốt nhất trong tất cả các lời giải khả thi. Bài toán tối ưu hóa có thể được chia thành hai loại tùy thuộc vào việc các biến là liên tục hay rời rạc. Bài toán tối ưu hóa với các biến rời rạc còn được gọi là một bài toán tối ưu hóa tổ hợp.

Xem Số nguyên và Bài toán tối ưu hóa

Bù 2

Bù 2 (tiếng Anh: two's complement) là một số trong hệ nhị phân là bù đúng (true complement) của một số khác.

Xem Số nguyên và Bù 2

Bất đẳng thức Bernoulli

Trong toán học, bất đẳng thức Bernoulli là một bất đẳng thức cho phép tính gần đúng các lũy thừa của 1 + x. Bất đẳng thức này được phát biểu như sau: với mọi số nguyên r ≥ 0 và với mọi số thực x > −1.

Xem Số nguyên và Bất đẳng thức Bernoulli

Bồi âm

Dao động trên 1 sợi dây chuẩn, chia sợi dây thành những búi sóng có chiều dài tương ứng với f, 2f, 3f, 4f...(trong đó f là tần số của sóng âm cơ bản). Âm chính (110 Hz) và 15 bồi âm đầu (16 sóng hài thành phần) (nghe) Bồi âm (còn gọi là bội âm, hài âm hoặc họa âm) là những âm có tần số cao hơn tần số cơ bản của một âm.

Xem Số nguyên và Bồi âm

Bổ đề Bézout

Trong lý thuyết số cơ bản, bổ đề Bézout được phát biểu thành định lý sau: Nếu d.

Xem Số nguyên và Bổ đề Bézout

Bộ ba số Pythagore

Định lý Pythagoras: ''a''2 + ''b''2.

Xem Số nguyên và Bộ ba số Pythagore

Biểu diễn dữ liệu

Thông tin và dữ liệu mà con người hiểu được tồn tại dưới nhiều dạng khác nhau, ví dụ như các số, các ký tự văn bản, âm thanh, hình ảnh...

Xem Số nguyên và Biểu diễn dữ liệu

Boson

rubidi. Hình vẽ là phân bố tốc độ của chuyển động của các nguyên tử, theo vị trí. Màu đỏ chỉ nguyên tử di chuyển chậm, màu xanh và trắng chỉ nguyên tử di chuyển nhanh. Trái: trước khi có động đặc Bose-Einstein.

Xem Số nguyên và Boson

Byte

Byte (đọc là bai-(tơ)) là một đơn vị lưu trữ dữ liệu cho máy tính, bất kể loại dữ liệu đang được lưu trữ.

Xem Số nguyên và Byte

C++

C++ (đọc là "C cộng cộng" hay "xi-plus-plus", IPA: /siː pləs pləs/) là một loại ngôn ngữ lập trình.

Xem Số nguyên và C++

Carl Friedrich Gauß

Carl Friedrich Gauß (được viết phổ biến hơn với tên Carl Friedrich Gauss; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều đóng góp lớn cho các lĩnh vực khoa học, như lý thuyết số, giải tích, hình học vi phân, khoa trắc địa, từ học, tĩnh điện học, thiên văn học và quang học.

Xem Số nguyên và Carl Friedrich Gauß

Cận trên đúng

Một tập hợp ''A'' gồm các số thực (được vẽ bằng các chấm màu xanh), tập hợp các cận trên của ''A'' (các chấm màu đỏ), và giá trị nhỏ nhất của các cận trên này, tức là, cận trên đúng của ''A'' (được vẽ bằng một hình thoi màu đỏ).

Xem Số nguyên và Cận trên đúng

Cửu chương toán thuật

Sách ''Cửu chương toán thuật'' Cửu chương toán thuật (chữ Hán: 九章算术) là một quyển sách về toán học của người Trung Quốc được biên soạn vào thời Đông Hán.

Xem Số nguyên và Cửu chương toán thuật

Căn nguyên thủy modulo n

Căn nguyên thủy modulo n là một khái niệm trong số học modulo của lý thuyết số.

Xem Số nguyên và Căn nguyên thủy modulo n

Chứng minh toán học

Trong toán học, một chứng minh là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắnCupillari, Antonella.

Xem Số nguyên và Chứng minh toán học

Chữ số

Mười chữ số của hệ thống chữ số Ả Rập theo thứ tự về giá trị Trong toán học và khoa học máy tính, một chữ số là một ký hiệu (một ký hiệu bằng số, ví dụ "3" hoặc "7") được dùng trong các con số (kết hợp các ký hiệu, ví dụ "37") để tượng trưng cho một số (số nguyên hoặc số thực) trong dãy số của hệ thống số.

Xem Số nguyên và Chữ số

Chia hết

Trong lý thuyết số, chia hết là một quan hệ hai ngôi trên tập các số nguyên.

Xem Số nguyên và Chia hết

Chu kỳ

Trong khoa học và đời sống nói chung, chu kỳ là khoảng thời gian giữa hai lần lặp lại liên tiếp của một sự việc, hay thời gian để kết thúc một vòng quay, một chu trình.

Xem Số nguyên và Chu kỳ

Danh sách các bài toán học

Bài này nói về từ điển các bài toán học.

Xem Số nguyên và Danh sách các bài toán học

Diofantos

La tinh. Diofantus xứ Alexandria (Tiếng Hy Lạp:. sinh khoảng năm 200 đến 214, mất khoảng năm 284 đến 298), đôi khi được mệnh danh là "cha đẻ của ngành đại số" (một số người cho rằng danh hiệu này nên được cùng chia sẻ với Al-Khwārizmī, người sinh sau Diofantus khoảng 500 năm), là nhà toán học xứ Alexandria và là tác giả của loạt sách có tên gọi Arithmetica (số học).

Xem Số nguyên và Diofantos

Emmy Noether

Emmy Noether (tên đầy đủ Amalie Emmy Noether; 23 tháng 3 năm 1882 – 14 tháng 4 năm 1935), là nhà toán học có ảnh hưởng người Đức nổi tiếng vì những đóng góp nền tảng và đột phá trong lĩnh vực đại số trừu tượng và vật lý lý thuyết.

Xem Số nguyên và Emmy Noether

Expr

expr là một lệnh tiện ích của Unix dùng để đánh giá một biểu thức và trả về kết quả tương ứng.

Xem Số nguyên và Expr

Giả định abc

Giả định abc là một giả định toán học, được phát biểu ban đầu năm 1985 bởi Joseph Oesterlé và được tổng quát hóa sau đó bởi David Masser.

Xem Số nguyên và Giả định abc

Giếng khoan

Giếng khoan là công trình dạng hình trụ trong vỏ Trái đất có tiết diện nhỏ (thường từ 40 đến 3.000 mm) và chiều sâu lớn (thường từ vài m đến hàng nghìn m) thường là với mục đích lấy nước, dầu hay khí từ mạch nước ngầm, hay vỉa dầu, khí.

Xem Số nguyên và Giếng khoan

Googol

Googol là một số nguyên rất lớn, được viết bằng 10100 trong hệ thập phân, hay có một trăm chữ số 0 theo sau chữ số 1.

Xem Số nguyên và Googol

Hàm bước Heaviside

Hàm bước Heaviside, sử dụng quy ước tối đa một nửa Hàm bước Heaviside, hoặc hàm bước đơn vị, thường được biểu thị bằng H hoặc θ (nhưng đôi khi bằng u,  hoặc ), là một hàm rời rạc có giá trị là zero cho đối số âm và bằng một cho đối số dương. Đó là một ví dụ về các lớp học chung của các hàm bước, tất cả đều có thể được biểu diễn như là các tổ hợp tuyến tính của các tịnh tiến của một hàm loại này.

Xem Số nguyên và Hàm bước Heaviside

Hàm lượng giác

Đồ thị hàm sin Đồ thị hàm cos Đồ thị hàm tang Đồ thị hàm cotang Đồ thị hàm sec Đồ thị hàm cosec Trong toán học nói chung và lượng giác học nói riêng, các hàm lượng giác là các hàm toán học của góc, được dùng khi nghiên cứu tam giác và các hiện tượng có tính chất tuần hoàn.

Xem Số nguyên và Hàm lượng giác

Hàm rect

Hàm rect. Hàm chữ nhật hay hàm rect là một hàm toán học liên tục được định nghĩa như sau: 0 & \text |t| > \frac \\ \frac & \mbox |t|.

Xem Số nguyên và Hàm rect

Hàm tuần hoàn

Minh họa hàm tuần hoàn với chu kỳ P. Trong toán học, một hàm tuần hoàn là hàm số lặp lại giá trị của nó trong những khoảng đều đặn hay chu kỳ.

Xem Số nguyên và Hàm tuần hoàn

Hỗn số

Hỗn số là một phân số có giá trị lớn hơn 1.

Xem Số nguyên và Hỗn số

Hệ đếm

Hệ đếm (hoặc hệ cơ số) là một hệ thống dùng để thể hiện các chữ số.

Xem Số nguyên và Hệ đếm

Hệ nhị phân

Hệ nhị phân (hay hệ đếm cơ số hai) là một hệ đếm dùng hai ký tự để biểu đạt một giá trị số, bằng tổng số các lũy thừa của 2.

Xem Số nguyên và Hệ nhị phân

Hệ tam phân

Hệ tam phân còn gọi là hệ cơ số 3 là một hệ đếm. Mặc dù hệ tam phân thường được dùng để chỉ một hệ thống trong đó có ba chữ số là số không âm, đặc biệt là 0, 1 và 2, nó còn có tên là hệ thống ba số cân bằng, bao gồm các chữ số -1, 0 và +1, được sử dụng trong logic so sánh và các máy tính ba chiều.

Xem Số nguyên và Hệ tam phân

Hệ tọa độ cực

Các điểm trong hệ tọa độ cực với gốc Cực ''O'' và trục Cực ''L''. Với minh họa màu xanh lá cây điểm (màu đỏ) có bán kính 3 và góc 60 độ, hoặc (3,60°).

Xem Số nguyên và Hệ tọa độ cực

Hệ thập lục phân

Trong toán học và trong khoa học điện toán, hệ thập lục phân (hay hệ đếm cơ số 16, tiếng Anh: hexadecimal), hoặc chỉ đơn thuần gọi là thập lục, là một hệ đếm có 16 ký tự, từ 0 đến 9 và A đến F (chữ hoa và chữ thường như nhau).

Xem Số nguyên và Hệ thập lục phân

Hệ thống kiểu

Trong ngôn ngữ lập trình, hệ thống kiểu (tiếng Anh: type system) là một tập các quy tắc gán một thuộc đặc tính gọi là kiểu cho các cấu trúc khác nhau của một chương trình máy tính bao gồm, như biến, biểu thức, hàm hay mô đun.

Xem Số nguyên và Hệ thống kiểu

Hydrat

Hydrat (hi-đờ-rát, bắt nguồn từ tiếng Pháp: hydrate) là thuật ngữ được sử dụng trong hóa vô cơ và hóa hữu cơ để chỉ một chất chứa nước.

Xem Số nguyên và Hydrat

ISO 31-11

ISO 31-11 là một phần của các tiêu chuẩn quốc tế ISO 31 định nghĩa các ký hiệu toán học sử dụng trong vật lý và kỹ thuật.

Xem Số nguyên và ISO 31-11

Kiểm tra Solovay-Strassen

Kiểm tra Solovay-Strassen là một trong các phương pháp kiểm tra tính nguyên tố theo xác suất do Robert M. Solovay và Volker Strassen phát triển.

Xem Số nguyên và Kiểm tra Solovay-Strassen

Kiểu dữ liệu C

Trong ngôn ngữ lập trình C, kiểu dữ liệu (tiếng Anh: data type) là khai báo cho địa chỉ bộ nhớ hay biến mà xác định đặc tính của dữ liệu được lưu trữ và các hàm (toán tử) để xử lý được phép liên quan đến chúng.

Xem Số nguyên và Kiểu dữ liệu C

Lịch sử toán học

''Cuốn cẩm nang về tính toán bằng hoàn thiện và cân đối'' Từ toán học có nghĩa là "khoa học, tri thức hoặc học tập".

Xem Số nguyên và Lịch sử toán học

Lý thuyết số

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Xem Số nguyên và Lý thuyết số

Lý thuyết số đại số

Lý thuyết số đại số là một nhánh của lý thuyết số sử dụng các kỹ thuật của đại số trừu tượng để nghiên cứu các số nguyên, các số hữu tỷ và các tổng quát hoá của chúng.

Xem Số nguyên và Lý thuyết số đại số

Lý thuyết vành

Trong đại số, lý thuyết vành là các nghiên cứu về vành—các cấu trúc đại số trong đó phép cộng và phép nhân được định nghĩa và có các thuộc tính tương tự như các phép toán được định nghĩa cho số nguyên.

Xem Số nguyên và Lý thuyết vành

Liên phân số

Phân số liên tục (tiếng Anh: continued fraction) còn gọi là liên phân số là một dạng biểu diễn các số thực dương, cả hữu tỷ và vô tỷ, dưới dạng một phân số nhiều tầng.

Xem Số nguyên và Liên phân số

Lượng tử hóa

Tín hiệu được lượng tử hoá Lượng tử (quantum) trong vật lý học là một đại lượng rời rạc và nhỏ nhất của một thực thể vật lý.

Xem Số nguyên và Lượng tử hóa

Ma trận kì ảo

Trong toán vui, một ma trận kì ảo bậc n (còn gọi là ma phương hay hình vuông ma thuật) là một cách sắp xếp n² số, thường là các số nguyên phân biệt, trong một bảng vuông sao cho tổng n số trên mỗi hàng, cột, và đường chéo đều bằng nhau.

Xem Số nguyên và Ma trận kì ảo

Ma trận lũy linh

Trong đại số tuyến tính, một ma trận lũy linh là một ma trận vuông N sao cho với k là số nguyên dương.

Xem Số nguyên và Ma trận lũy linh

Mô hình màu RGB

Phối trộn màu bổ sung: thêm đỏ vào xanh lá cây tạo ra vàng; thêm vàng vào xanh lam tạo ra trắng. Mô hình màu RGB sử dụng mô hình bổ sung trong đó ánh sáng đỏ, xanh lục và xanh lam được tổ hợp với nhau theo nhiều phương thức khác nhau để tạo thành các màu khác.

Xem Số nguyên và Mô hình màu RGB

Mô hình toán học

Một mô hình toán học là một mô hình trừu tượng sử dụng ngôn ngữ toán để mô tả về một hệ thống.

Xem Số nguyên và Mô hình toán học

Meson

Meson (tiếng Việt đọc là Mê dôn), bao gồm meson nguyên sinh, là các hạt hadron có spin nguyên (do đó là các boson) chứa 1 quark hóa trị cùng 1 phản quark hóa trị, pion và kaon cùng một số dạng meson biến thể khác.

Xem Số nguyên và Meson

Michel Chasles

Michel Floréal Chasles (1793-1880) là nhà toán học người Pháp.

Xem Số nguyên và Michel Chasles

Ngày Julius

Hôm nay là ngày Julius năm.

Xem Số nguyên và Ngày Julius

Nghịch đảo phép cộng

Trong toán học, nghịch đảo phép cộng của một số là số mà khi cộng với cho kết quả 0.

Xem Số nguyên và Nghịch đảo phép cộng

Nguyên

Nguyên trong tiếng Việt có thể chỉ các đối tượng.

Xem Số nguyên và Nguyên

Nguyên lý ngăn kéo Dirichlet

''m''.

Xem Số nguyên và Nguyên lý ngăn kéo Dirichlet

Ngưng tụ Bose-Einstein

rubidi. Hình vẽ là phân bố tốc độ của chuyển động của các nguyên tử, theo vị trí. Màu đỏ chỉ nguyên tử chuyển động nhanh, màu xanh và trắng chỉ nguyên tử chuyển động chậm. Trái: trước khi xuất hiện ngưng tụ Bose-Einstein.

Xem Số nguyên và Ngưng tụ Bose-Einstein

Nhóm (toán học)

khối lập phương Rubik tạo thành nhóm khối lập phương Rubik. Trong toán học, nhóm (Group) là tập hợp các phần tử cùng với phép toán hai ngôi kết hợp hai phần tử bất kỳ của tập hợp thành một phần tử thứ ba thỏa mãn bốn điều kiện gọi là tiên đề nhóm, lần lượt là tính đóng, kết hợp, phần tử đơn vị và tính khả nghịch.

Xem Số nguyên và Nhóm (toán học)

Nhóm cyclic

Trong lý thuyết nhóm, một nhóm cyclic hay nhóm monogenous là một nhóm có thể được sinh ra từ một tập hợp sinh chỉ gồm một phần tử g, phần tử này được gọi là phần tử sinh của nhóm.

Xem Số nguyên và Nhóm cyclic

Nhóm cơ bản

Trong toán học, nhóm cơ bản là một trong những khái niệm cơ bản của tô pô đại số.

Xem Số nguyên và Nhóm cơ bản

Phân phối nhị thức

Phân phối nhị thức là một phân phối xác suất rời rạc với hai tham số n và p, kí hiệu của số lượng lượt thử thành công trong n lượt thử độc lập tìm kết quả CÓ hay KHÔNG thành công.

Xem Số nguyên và Phân phối nhị thức

Phân phối Poisson

Trong lý thuyết xác suất và thống kê, Phân phối Poisson (phân phối Poa-xông) là một phân phối xác suất rời rạc.

Xem Số nguyên và Phân phối Poisson

Phân số

Một cái bánh với \frac14 bánh bị mất. Phần còn lại là \frac34. Phân số là sự biểu diễn số hữu tỉ dưới dạng tỉ lệ của hai số nguyên, trong đó số ở trên được gọi là tử số, còn số ở dưới được gọi là mẫu số.

Xem Số nguyên và Phân số

Phân số đơn vị

Một phân số đơn vị là một số hữu tỷ viết như là một phân số mà tử số là một và mẫu số  là một số nguyên dương. Một phân số đơn vị do đó là đối ứng của một số nguyên dương, 1/n.

Xem Số nguyên và Phân số đơn vị

Phân tích đa thức

Trong toán học và đại số máy tính, việc phân tích đa thức  là quá trình diễn đạt một đa thức với hệ số thuộc một trường hoặc là số nguyên thành một tích của các đa thức không thể phân tích được có hệ số trong cùng một miền.

Xem Số nguyên và Phân tích đa thức

Phân tích nhân tử

Phân tích nhân tử là một thuật ngữ toán học dùng để chỉ một cách viết một số nguyên, hay tổng quát là một vật thể toán học, thành một phép nhân của các số nguyên khác, hay tổng quát là các vật thể toán học khác.

Xem Số nguyên và Phân tích nhân tử

Phân tích từ vựng

Quá trình phân tích từ vựng trong các giai đoạn xử lý. Trong ngành khoa học máy tính, phân tích từ vựng (en:Lexical Analysis, còn được gọi là scanning hoặc lexing) là một quá trình chuyển đổi chuỗi ký tự nguồn thành một chuỗi liên tiếp các đoạn ký tự ngắn hơn đã được phân loại, gọi là tokens.

Xem Số nguyên và Phân tích từ vựng

Phân tử

Phân tử là hạt đại diện cho chất, gồm một số nguyên tử liên kết với nhau và thể hiện đầy đủ tính chất hoá học của chất Mô hình phân tử nước H2O Phân tử là một nhóm trung hòa điện tích có nhiều hơn 2 nguyên tử liên kết với nhau bằng các liên kết hóa học.

Xem Số nguyên và Phân tử

Phép chia

20:4.

Xem Số nguyên và Phép chia

Phép lấy tổng

Phép lấy tổng, phép tổng hay tổng là phép tính cộng một dãy số.

Xem Số nguyên và Phép lấy tổng

Phần nguyên

Trong toán học và khoa học máy tính, hàm floor và ceiling là các quy tắc cho tương ứng một số thực vào một số nguyên gần nhất bên trái và bên phải số đã cho.

Xem Số nguyên và Phần nguyên

Phần tử không

Trong toán học, phần tử không là một trong các tổng quát hóa của số không đến các cấu trúc đại số khác.

Xem Số nguyên và Phần tử không

Phương trình

Trong toán học, phương trình là một mệnh đề chứa biến có dạng: Trong đó x_1,x_2,...

Xem Số nguyên và Phương trình

Phương trình đại số

Một phương trình đại số với n biến số là một phương trình có dạng: trong đó f(x1,x2,...,xn) là một đa thức của n ẩn x1, x2,..., xn.

Xem Số nguyên và Phương trình đại số

Phương trình Diophantos

Phương trình Diophantine (tiếng Anh: diophantine equation), phương trình Đi-ô-phăng hay phương trình nghiệm nguyên bất định có dạng: khi n \geq 2, và f(x1;x2;x3;...;xn) là một đa thức nguyên với một hoặc đa biến thì (*) được gọi là phương trình nghiệm nguyên (algebraic diophantine equation) bộ số (x01;x02;x03;...;x0n)\in Z thỏa (*) được gọi là một nghiệm nguyên của phương trình.

Xem Số nguyên và Phương trình Diophantos

Pi

Số pi (ký hiệu) là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường tròn đó.

Xem Số nguyên và Pi

Quark

Quark (hay) (tiếng Việt đọc là Quắc) là một hạt cơ bản sơ cấp và là một thành phần cơ bản của vật chất.

Xem Số nguyên và Quark

Ruby (ngôn ngữ lập trình)

Ruby là một ngôn ngữ lập trình hướng đối tượng, có khả năng phản ứng.

Xem Số nguyên và Ruby (ngôn ngữ lập trình)

Số đại số

Trong toán học, một số đại số là một nghiệm (thực hoặc phức) của một phương trình đại số.

Xem Số nguyên và Số đại số

Số chính phương

Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên.

Xem Số nguyên và Số chính phương

Số chẵn

Trong toán học, số chẵn là số nguyên chia hết cho 2.

Xem Số nguyên và Số chẵn

Số Dudeney

Một số Dudeney là một số nguyên dương có giá trị bằng lập phương của tổng chữ số của nó.

Xem Số nguyên và Số Dudeney

Số Erdős

Số Erdős là số nguyên mô tả "khoảng cách cộng tác" giữa một người đối với nhà toán học Hungary Paul Erdős (1913 - 1996) qua các công trình nghiên cứu Toán học được đăng trên các tạp chí chuyên về Toán học uy tín trên Thế giới Nó được một số người tạo ra mang tính chất hài hước và cũng là để ghi nhớ công lao to lớn của Erdős, một nhà toán học có lượng công trình rất khổng lồ.

Xem Số nguyên và Số Erdős

Số học

Các bảng số học dành cho trẻ em, Lausanne, 1835 Số học là một phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những công việc thường nhật cho đến các tính toán khoa học và kinh doanh cao cấp, qua các phép tính cộng, trừ, nhân, chia.

Xem Số nguyên và Số học

Số học mô đun

Chiếc đồng hồ với mô đun bằng 12 Trong toán học, số học mô đun là một hệ thống số học dành cho số nguyên.

Xem Số nguyên và Số học mô đun

Số hữu tỉ

Một phần tư Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên với b \ne 0.

Xem Số nguyên và Số hữu tỉ

Số Liouville

Trong lý thuyết số, một số Liouville là một số thực x với tính chất rằng, với mọi số nguyên dương n, tồn tại các số nguyên p và q với q > 1 và sao cho Một số Liouville do đó có thể xấp xỉ rất sát bởi một dãy số hữu tỉ.

Xem Số nguyên và Số Liouville

Số nguyên (khoa học máy tính)

Trong khoa học máy tính, một số nguyên (tiếng Anh: integer) là một dữ liệu của kiểu dữ liệu nguyên, một kiểu dữ liệu đại diện cho tập con hữu hạn của các số nguyên toán học.

Xem Số nguyên và Số nguyên (khoa học máy tính)

Số nguyên Gauss

Một số nguyên Gauss là một số phức với phần thực và phần ảo đều là các số nguyên.

Xem Số nguyên và Số nguyên Gauss

Số nguyên tố

Số nguyên tố là số tự nhiên chỉ có hai ước số dương phân biệt là 1 và chính nó.

Xem Số nguyên và Số nguyên tố

Số nguyên tố cùng nhau

Trong toán học, các số nguyên a và b được gọi là nguyên tố cùng nhau (tiếng Anh: coprime hoặc relatively prime) nếu chúng có Ước số chung lớn nhất là 1.

Xem Số nguyên và Số nguyên tố cùng nhau

Số siêu phức

Trong toán học, số siêu phức là khái niệm mở rộng của số phức từ dạng tổ hợp tuyến tính 2 chiều z.

Xem Số nguyên và Số siêu phức

Số siêu việt

Trong toán học, số siêu việt là số (thực hoặc phức) nhưng lại không là nghiệm của phương trình đại số nào.

Xem Số nguyên và Số siêu việt

Số tự nhiên

Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các số tự nhiên là các số 0, 1, 2, 3, 4, 5,...

Xem Số nguyên và Số tự nhiên

Số thập phân vô hạn tuần hoàn

Một số thập phân vô hạn tuần hoàn là biểu diễn thập phân của một số có phần thập phân lặp lại (lặp lại giá trị của nó ở các khoảng đều đặn) và phần lặp lại vô hạn không phải là số không.

Xem Số nguyên và Số thập phân vô hạn tuần hoàn

Số thực

Trong toán học, các số thực có thể được mô tả một cách không chính thức theo nhiều cách.

Xem Số nguyên và Số thực

Số vô tỉ

Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số \frac (a và b là các số nguyên).Tập hợp số vô tỉ ký hiệu là \mathbb I Ví dụ.

Xem Số nguyên và Số vô tỉ

Sin

Sin là một hàm số lượng giác.

Xem Số nguyên và Sin

Song ánh

Hàm song ánh f:X→Y, với tập X là 1,2,3,4 và tập Y là A,B,C,D. Ví dụ, f(1).

Xem Số nguyên và Song ánh

Tam giác Heron

Trong Hình học, tam giác Heron là tam giác mà độ dài ba cạnh và diện tích của nó đều là các số hữu tỉ.

Xem Số nguyên và Tam giác Heron

Tích chập

Tích chập của 2 xung vuông, kết quả sóng đầu ra có dạng tam giác. Tích chập của 1 xung vuông với 1 đáp ứng xung của 1 mạch RC. Trong toán học và đặc biệt là trong giải tích hàm, tích chập là 1 phép toán thực hiện đối với 2 hàm số f và g, kết quả cho ra 1 hàm số thứ 3.

Xem Số nguyên và Tích chập

Tính chẵn lẻ của số không

Hai đĩa cân thăng bằng này chứa không đồ vật, chia ra làm hai nhóm bằng nhau. Không là một số chẵn.

Xem Số nguyên và Tính chẵn lẻ của số không

Tập hợp (toán học)

Trong toán học, tập hợp có thể hiểu tổng quát là một sự tụ tập của một số hữu hạn hay vô hạn các đối tượng nào đó.

Xem Số nguyên và Tập hợp (toán học)

Tập hợp đếm được

Tập hợp đếm được (hay tập hợp có lực lượng đếm được) trong toán học được định nghĩa là tập hợp có thể thiết lập một đơn ánh vào tập hợp số tự nhiên.

Xem Số nguyên và Tập hợp đếm được

Tập hợp hữu hạn

Trong toán học, một tập hợp hữu hạn là một tập hợp có một số hữu hạn các phần t. Một cách không chính thức, một tập hữu hạn là một tập hợp mà có thể đếm và có thể kết thúc việc đếm.

Xem Số nguyên và Tập hợp hữu hạn

Tập hợp vô hạn

Trong lý thuyết tập hợp, một tập hợp vô hạn là một tập hợp mà không phải là một tập hợp hữu hạn.

Xem Số nguyên và Tập hợp vô hạn

Tỷ

Tỷ, trong tiếng Việt, là số nguyên có giá trị bằng một ngàn triệu, tức 109.

Xem Số nguyên và Tỷ

Tối ưu hóa (toán học)

Trong toán học, thuật ngữ tối ưu hóa chỉ tới việc nghiên cứu các bài toán có dạng Một phát biểu bài toán như vật đôi khi được gọi là một quy hoạch toán học (mathematical program).

Xem Số nguyên và Tối ưu hóa (toán học)

Thí nghiệm giọt dầu Millikan

Thí nghiệm giọt dầu Millikan, thực hiện bởi nhà vật lý người Mỹ Robert Millikan khoảng năm 1909, được cho là một trong những thí nghiệm đầu tiên đo được điện tích của electron.

Xem Số nguyên và Thí nghiệm giọt dầu Millikan

Thông số (trò chơi nhập vai)

Thông số, hay chỉ số, trong các trò chơi nhập vai (RPG) là một loại dữ liệu tượng trưng cho một lĩnh vực nhất định của nhân vật ảo.

Xem Số nguyên và Thông số (trò chơi nhập vai)

Thuật ngữ lý thuyết đồ thị

Lưu ý: Danh sách thuật ngữ lý thuyết đồ thị này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản.

Xem Số nguyên và Thuật ngữ lý thuyết đồ thị

Toán học

Euclid, nhà toán học Hy Lạp, thế kỷ thứ 3 trước Tây lịch, theo hình dung của họa sĩ Raphael, trong một chi tiết của bức họa "Trường Athens".Người đời sau không biết Euclid trông như thế nào, do đó miêu tả về Euclid trong các tác phẩm nghệ thuật tùy thuộc vào trí tượng tượng của người nghệ sĩ (''xem Euclid'').

Xem Số nguyên và Toán học

Toán học thuần túy

Nói chung, toán học thuần túy là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng.

Xem Số nguyên và Toán học thuần túy

Trục số

Trong toán học, trục số là một hình ảnh của một đường thẳng được sử dụng như là sự trừu tượng hóa cho các số thực, ký hiệu \mathbb. Mỗi điểm của trục số được giả định là tương ứng với một số thực và mỗi số thực tương ứng với một điểm trên trục số.

Xem Số nguyên và Trục số

Vành giao hoán

Trong lý thuyết vành, một nhánh của đại số trừu tượng, một vành giao hoán là một vành trong đó phép nhân là giao hoán.

Xem Số nguyên và Vành giao hoán

Ước số chung lớn nhất

Trong toán học, nếu số nguyên a chia hết cho số nguyên b thì số b được gọi là ước của số nguyên a, a được gọi là bội của b. Số nguyên dương b lớn nhất là ước của cả hai số nguyên a, b được gọi là ước số chung lớn nhất (ƯCLN) của a và b.

Xem Số nguyên và Ước số chung lớn nhất

0 (số)

Không, đôi khi còn được gọi là dê-rôĐặng Thái Minh, “Dictionnaire vietnamien - français.

Xem Số nguyên và 0 (số)

1729 (số)

1729 là số tự nhiên liền sau 1728 và liền trước 1730.

Xem Số nguyên và 1729 (số)

2147483647 (số)

2147483647 (hai tỷ một trăm bốn mươi bảy triệu bốn trăm tám mươi ba nghìn sáu trăm bốn mươi bảy) là một số tự nhiên ngay sau 2147483646 và ngay trước 2147483648.

Xem Số nguyên và 2147483647 (số)

32-bit

32-bit là một thuật ngữ dành cho thế hệ máy vi tính trong đó 32-bit vi xử lý là tiêu chuẩn.

Xem Số nguyên và 32-bit

Còn được gọi là Tập hợp số nguyên.

, Hệ nhị phân, Hệ tam phân, Hệ tọa độ cực, Hệ thập lục phân, Hệ thống kiểu, Hydrat, ISO 31-11, Kiểm tra Solovay-Strassen, Kiểu dữ liệu C, Lịch sử toán học, Lý thuyết số, Lý thuyết số đại số, Lý thuyết vành, Liên phân số, Lượng tử hóa, Ma trận kì ảo, Ma trận lũy linh, Mô hình màu RGB, Mô hình toán học, Meson, Michel Chasles, Ngày Julius, Nghịch đảo phép cộng, Nguyên, Nguyên lý ngăn kéo Dirichlet, Ngưng tụ Bose-Einstein, Nhóm (toán học), Nhóm cyclic, Nhóm cơ bản, Phân phối nhị thức, Phân phối Poisson, Phân số, Phân số đơn vị, Phân tích đa thức, Phân tích nhân tử, Phân tích từ vựng, Phân tử, Phép chia, Phép lấy tổng, Phần nguyên, Phần tử không, Phương trình, Phương trình đại số, Phương trình Diophantos, Pi, Quark, Ruby (ngôn ngữ lập trình), Số đại số, Số chính phương, Số chẵn, Số Dudeney, Số Erdős, Số học, Số học mô đun, Số hữu tỉ, Số Liouville, Số nguyên (khoa học máy tính), Số nguyên Gauss, Số nguyên tố, Số nguyên tố cùng nhau, Số siêu phức, Số siêu việt, Số tự nhiên, Số thập phân vô hạn tuần hoàn, Số thực, Số vô tỉ, Sin, Song ánh, Tam giác Heron, Tích chập, Tính chẵn lẻ của số không, Tập hợp (toán học), Tập hợp đếm được, Tập hợp hữu hạn, Tập hợp vô hạn, Tỷ, Tối ưu hóa (toán học), Thí nghiệm giọt dầu Millikan, Thông số (trò chơi nhập vai), Thuật ngữ lý thuyết đồ thị, Toán học, Toán học thuần túy, Trục số, Vành giao hoán, Ước số chung lớn nhất, 0 (số), 1729 (số), 2147483647 (số), 32-bit.